CHAPTER - 4
 MEASUREMENT OF RESISTANCE

One Mark Questions

2. Ans: (d)

Sol: There are three meters
(i). Meter one having a sensitivity $S=1000 \Omega / v$

Resistance offered $R_{v}=$ sensitivity \times voltage range

$$
\mathrm{R}_{\mathrm{v}}=1000 \times 100=100 \mathrm{k} \Omega
$$

(ii). Meter two having a sensitivity $S=20,000 \Omega / v$
$R_{v}=20,000 \times 100=2 \mathrm{M} \Omega$
(iii) Meter three is an Electronic meter

Meters two and three having high sensitivity less loading effect
Meter one has less sensitivity more loading effect

Two Marks Questions

30. Ans: (b)

Sol:
The given circuit is
Sensitivity $(S)=20,000 \Omega / v$
$\mathrm{R}_{\mathrm{v}}=\mathrm{S} \times$ voltage range
$\mathrm{R}_{\mathrm{v}}=20,000 \times 1$
$\mathrm{R}_{\mathrm{v}}=20 \mathrm{k} \Omega$

From the circuit $\mathrm{R}_{\mathrm{eq}}=\frac{100 \times 10^{3} \times 20 \times 10^{3}}{100 \times 10^{3}+20 \times 10^{3}}+1 \times 10^{6}$

$$
\mathrm{R}_{\mathrm{eq}}=1016.66 \Omega
$$

From voltage division rule

$$
\mathrm{V}_{\mathrm{m}}=5 \times \frac{100}{100+1019.6}=0.45 \mathrm{~V}
$$

31. Ans: (d)

Sol: Voltage across the $500 \mathrm{k} \Omega$ resistor is exactly 10 V Sensitivity of voltmeter $20 \mathrm{k} \Omega / \mathrm{V}$ The readings indicated on its 50 V and 5 V range?

Voltage across V_{AB} by voltage division rule

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{AB}}=\frac{500}{500+500} \times 20 \\
& \mathrm{~V}_{\mathrm{AB}}=10 \mathrm{~V}
\end{aligned}
$$

Reading indicated on 50 V range is

$$
R_{v}=S \times \text { voltage range }
$$

All the best urs venugopal

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{v}}=20 \times 10^{3} \times 50=1000 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{v}} \text { connected across 'AB' } \\
& \mathrm{R}_{\mathrm{eq}}=\frac{500 \times 1000}{500+1000}=333.3 \Omega \\
& \mathrm{~V}=20 \times \frac{333.3}{500+333.3}=8 \mathrm{~V} \\
& \text { Reading indicated on ' } 5 \mathrm{~V} \text { ' range is } \\
& \mathrm{R}_{\mathrm{v}}=\mathrm{S} \times \text { voltage range } \\
& \mathrm{R}_{\mathrm{v}}=20 \times 10^{3} \times 5=100 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{eq}}=\frac{500 \times 100}{500+100}=83.33 \Omega \\
& \mathrm{~V}=20 \times \frac{83.33}{500+83.33}=2.86 \mathrm{~V}
\end{aligned}
$$

32. Ans: (a)

Sol:
Voltmeter reads 60 V on 100 V full scale
Ammeter reads 0.8 A on 1 A full scale
Both meters are having guaranteed accuracy error 1% of full scale

$$
\mathrm{V}_{\mathrm{m}}=60 \mathrm{~V} \quad \mathrm{I}_{\mathrm{m}}=0.8 \mathrm{~A}
$$

Voltmeter, G.A.E $=1 \%$ of full scale voltage

$$
=\frac{1}{100} \times 100=1
$$

$\%$ Limiting error $=\frac{\text { G.A.E }}{\mathrm{V}_{\mathrm{m}}} \times 100$

$$
=\frac{1}{60} \times 100=1.66 \%
$$

Ammeter, G.A.E $=1 \%$ of full scale current

$$
=\frac{1}{100} \times 1=0.01
$$

$\%$ limiting error $=\frac{\text { G.A.E }}{\mathrm{I}_{\mathrm{m}}} \times 100$

$$
=\frac{0.01}{0.8} \times 100=1.25 \%
$$

Resistance $\mathrm{R}=\frac{\mathrm{V}_{\mathrm{m}}(\pm \text { L.E })}{\mathrm{I}_{\mathrm{m}}(\pm \text { L.E })}$

$$
\mathrm{R}=\frac{60(\pm 1.66 \%)}{0.8(\pm 1.25 \%)}
$$

$$
\mathrm{R}=75(\pm 2.91 \%)
$$

$$
\% \text { L.E }=2.91 \%
$$

33. Ans: (b)

Sol:
From the given data
Total $\mathrm{R}_{\text {se }}=2020 \Omega$

$\mathrm{L}=0.3 \mathrm{H}$
The meter read correctly at dc as well as at 50 Hz ac We have connect a capacitor of value

$$
\begin{aligned}
& \mathrm{C}=\frac{0.41 \times \mathrm{L}_{\mathrm{m}}}{\left(\mathrm{R}_{\text {se }}\right)^{2}} \\
& \mathrm{C}=\frac{0.41 \times 0.3}{(2020)^{2}} 40 . \\
& \mathrm{C}=0.0314 \mu \mathrm{~F}
\end{aligned}
$$

36. Ans: (b)

Sol:
Ratio arms $\left(\frac{\mathrm{P}}{\mathrm{Q}}\right)=\frac{1000}{100}=10 \Omega$
Standard resistance arms $S_{1}=1000, S_{2}=100, S_{3}=10, S_{4}=1 \Omega$
Bridge under balanced condition

$$
\begin{aligned}
& \frac{R}{S}=\frac{P}{Q} \\
& R=\left(\frac{P}{Q}\right) S_{\text {var iable }}
\end{aligned}
$$

Unknown resistance $\mathrm{R}_{1}=10 \times \mathrm{S}_{1}$

$$
\begin{aligned}
=10 \times 1000 & =10000 \Omega \\
\mathrm{R}_{2} & =10 \times 100 \\
\mathrm{R}_{3} & =10 \times 10 \times 0 \\
\mathrm{R}_{4} & =10 \times 1
\end{aligned}
$$

The minimum value of unknown resistance is $\mathrm{R}_{4}=10 \Omega$
The maximum value is obtained by adding ' 4 ' unknown values corresponding to each 'S'

$$
\begin{aligned}
& \mathrm{R}=10000+1000+100+10 \\
& \mathrm{R}=11110 \Omega
\end{aligned}
$$

40. Ans: (a)

Sol:

$$
\begin{aligned}
\mathrm{S} & =0.5 \mathrm{M} \Omega \\
\mathrm{R}_{\mathrm{g}} & =\mathrm{R}_{\mathrm{h}}=10 \mathrm{~K} \Omega
\end{aligned}
$$

(i) With standard resistor, 41 divisions

No.of divisions α current flowing through the meter

$$
41 \propto \frac{\mathrm{E}}{0.5 \times 10^{6}+10 \times 10}----- \text { (i) } \quad[\because \text { switch at positions }]
$$

(ii) With unknown resistance, 51 divisions

$$
\begin{align*}
& 51 \alpha \frac{\mathrm{E}}{\mathrm{R}_{\mathrm{m}}+10 \mathrm{~K} \Omega}-\cdots-\cdots----(\text { (ii) } \tag{ii}\\
& \text { divide } \frac{(\mathrm{ii})}{(\mathrm{i})} \text { them we get } \mathrm{R}_{\mathrm{m}} \\
& \frac{51}{41}=\frac{\mathrm{E}}{\mathrm{R}_{\mathrm{m}}+10 \times 10^{3}} \times \frac{0.5 \times 10^{6}+10 \times 10^{3}}{\mathrm{E}} \\
& \mathrm{R}_{\mathrm{m}}=0.4 \mathrm{M} \Omega
\end{align*}
$$

41. Ans: (a)

Sol: Resistance of unknown resistance required for balance is

$$
\mathrm{R}=(\mathrm{P} / \mathrm{Q}) \mathrm{S}=\left(\frac{1000}{1000}\right) \times 200=2000 \Omega
$$

In the actual bridge $\mathrm{R}=2005 \Omega$
The deviation from balance condition is $\Delta R=2005-2000$

$$
\Delta \mathrm{R}=5 \Omega
$$

Thevenine source generator emf $\mathrm{E}_{0}=\mathrm{E}\left[\frac{\mathrm{R}}{\mathrm{R}+\mathrm{S}}-\frac{\mathrm{P}}{\mathrm{P}+\mathrm{Q}}\right]$

$$
\begin{aligned}
& =5\left[\frac{2005}{2005+200}-\frac{100}{1000+100}\right] \\
& =1.0307 \times 10^{-3} \mathrm{~V}
\end{aligned}
$$

Internal resistance of bridge looking into terminals $b \& d$

$$
\begin{aligned}
& \mathrm{R}_{0}=\frac{\mathrm{Rs}}{\mathrm{R}+\mathrm{S}}+\frac{\mathrm{PQ}}{\mathrm{P}+\mathrm{Q}} \\
& \mathrm{R}_{0}=\frac{2005 \times 200}{2005+200}+\frac{1000 \times 100}{1000+100}=272.8 \Omega
\end{aligned}
$$

Hence the current through the galvanometer $I_{g}=\frac{E_{0}}{R_{0}+G}$

$$
\mathrm{I}_{\mathrm{g}}=\frac{1.0307 \times 10^{-3}}{272.8+100}=2.77 \mu \mathrm{~A}
$$

Deflection of galvanometer $\theta=\mathrm{S}_{\mathrm{i}} \times \mathrm{I}_{\mathrm{g}}=10 \times 2.77=27.7 \mathrm{~mm}$

$$
\text { Sensitivity of bridge } S_{B}=\frac{\theta}{\Delta R}=\frac{27.7}{5}=5.54 \mathrm{~mm} / \Omega
$$

42. Ans: (a)

Sol:
Each arm having a guaranteed accuracy error of $\pm 0.05 \%$
Standard arm has a guaranteed accuracy of $\pm 0.1 \%$
Ratio arms of both are set at 1000Ω
Bridge is balanced with standard arm adjusted to determine the upper and lower limits of unknown resistance?

$$
\text { Value of unknown resistance } \begin{aligned}
\mathrm{R} & =\left(\frac{\mathrm{P}}{\mathrm{Q}}\right) \times \mathrm{S} \\
& =\frac{1000}{1000} \times 3154 \\
& =3154 \Omega
\end{aligned}
$$

\% error in determination of R

$$
\begin{aligned}
\mathrm{R} & =\frac{1000(\pm 0.05 \%)}{1000(\pm 0.05 \%)} \times 3154(\pm 0.1 \%) \\
\mathrm{R} & =3154 \pm[0.05 \%+0.05 \%+0.1 \%] \\
& =3154 \pm 0.2 \%
\end{aligned}
$$

The upper and lower limits of unknown resistance is 3091 to 3217Ω
43. Ans: (a)

Sol: Given that

$$
\begin{array}{ll}
\mathrm{P}=1 \mathrm{k} \Omega, & \mathrm{R}=1 \mathrm{k} \Omega \\
\mathrm{~S}=5 \mathrm{k} \Omega & \mathrm{G}=100 \Omega
\end{array}
$$

Thevenin's voltage $\mathrm{E}_{0}=24 \mathrm{mV}$

$$
\mathrm{I}_{\mathrm{g}}=13.6 \mu \mathrm{~A}
$$

From circuit find thevenin equivalent circuit.

$$
\begin{gathered}
\mathrm{R}_{0}=\frac{\mathrm{RS}}{\mathrm{R}+\mathrm{S}}+\frac{\mathrm{PQ}}{\mathrm{P}+\mathrm{Q}} \\
\mathrm{I}_{0}=\frac{\mathrm{E}_{0}}{\mathrm{R}_{0}+\mathrm{G}} \\
\mathrm{R}_{0}+\mathrm{G}=\frac{24 \times 10^{-3}}{13.6 \times 10^{-6}}=1764.70 \\
\mathrm{R}_{0}=1764.7-100=1665 \Omega \\
\mathrm{R}_{0}=\frac{1000 \times 5000}{1000+5000}+\frac{1000 \times \mathrm{Q}}{1000+\mathrm{Q}} \\
\frac{1000 \mathrm{Q}}{1000+\mathrm{Q}}=8317 \\
\mathrm{Q}=4.95 \mathrm{k} \Omega
\end{gathered}
$$

44. Ans: (a)

Sol:

$$
\begin{aligned}
& \mathrm{S}=100.03 \times 10^{6} \Omega \\
& \mathrm{p}=100.31 \Omega \quad \mathrm{P}=100.24 \\
& \mathrm{q}=200 \Omega \quad \mathrm{Q}=200 \Omega \\
& \mathrm{r}=100 \times 10^{-6} \Omega \\
& \mathrm{R}=\frac{\mathrm{P}}{\mathrm{Q}} \cdot \mathrm{~S}+\frac{\mathrm{qr}}{\mathrm{p}+\mathrm{q}+\mathrm{r}}\left[\frac{\mathrm{P}}{\mathrm{Q}}-\frac{\mathrm{p}}{\mathrm{q}}\right] \\
& \mathrm{R}=49.97 \times 10^{-6} \Omega
\end{aligned}
$$

45. Ans:

Sol:

$$
\begin{aligned}
& \text { Given that } \\
& \mathrm{C}=600 \mathrm{pF} \\
& \mathrm{~V}=250 \mathrm{~V}
\end{aligned} \quad \mathrm{v}=92 \mathrm{~V}
$$

$$
\text { Insulation resistance } \mathrm{R}=\frac{0.43 \times \mathrm{t}}{\mathrm{C}_{\log }^{10}\left(\frac{\mathrm{~V}}{\mathrm{v}}\right)}
$$

$$
\mathrm{R}=\frac{0.434 \times 60}{600 \times 10^{-12} \times \log _{10}\left(\frac{250}{92}\right)}
$$

$$
\mathrm{R}=9.99 \times 10^{10}
$$

$$
\mathrm{R}=100 \times 10^{9} \Omega
$$

PREVIOUS IES SOLUTIONS

1. Ans: (b)

Sol: \quad The given circuit is
Equivalent impedance Z_{eq}

$$
\mathrm{Z}_{1}=\mathrm{R}+\mathrm{j} \omega \mathrm{~L}, \quad \mathrm{Z}_{2}=\frac{1}{\mathrm{j} \omega \mathrm{c}}
$$

$$
\begin{aligned}
Z_{e q} & =\frac{Z_{1} Z_{2}}{Z_{1} Z_{2}} \Rightarrow \frac{\left(\frac{1}{j \omega c}\right)(R+j \omega L)}{\left(R+j \omega L+\frac{1}{j \omega c}\right)} \\
Z & =\frac{R+j \omega\left(L-\omega^{2} L^{2} C-C R^{2}\right)}{1+\omega^{2} C^{2} R^{2}-2 \omega^{2} L C+\omega^{4} L^{2} C^{2}}
\end{aligned}
$$

Effective reactance

$$
\mathrm{X}_{\mathrm{eff}}=\frac{\omega\left\{\mathrm{L}\left(1-\omega^{2} \mathrm{LC}\right)-\mathrm{CR}^{2}\right\}}{1+\omega^{2} \mathrm{C}^{2} \mathrm{R}^{2}-2 \omega^{2} \mathrm{LC}+\omega^{4} \mathrm{~L}^{2} \mathrm{C}^{2}}
$$

Since $\mathrm{X}_{\text {eff }}$ is small, we have; $\omega^{2} \mathrm{LC} \ll 1$
So, ω^{2} LC can be neglected

$$
\therefore \mathrm{X}_{\mathrm{eff}}=\frac{\omega\left(\mathrm{L}-\mathrm{CR}^{2}\right)}{1+\omega^{2} \mathrm{C}\left(\mathrm{CR}^{2}-2 \mathrm{~L}\right)}
$$

If the resistance is non - inductive, then

$$
L-C R^{2}=0 \Rightarrow R=\sqrt{L / C}
$$

2. Ans: (b)

Sol:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{A}} & =10\left[\frac{10}{20+10}\right] \\
\mathrm{V}_{\mathrm{A}} & =3.33 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{B}} & =10\left(\frac{20}{20+10}\right) \\
\mathrm{V}_{\mathrm{B}} & =6.66 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}} & =6.66-3.33=3.33 \mathrm{~V}
\end{aligned}
$$

The reading of voltmeter is 3.33 V

03. Ans: (a)

Sol:
For accuracy $=99 \%$, voltage across the meter should be 49.5 V

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=50 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{m}}=49.5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{m}}=\mathrm{V}_{\mathrm{S}} \times \frac{\mathrm{R}}{100 \mathrm{k}+\mathrm{R}} \\
& \frac{\mathrm{R}}{100 \mathrm{k}+\mathrm{R}}=\frac{49.5}{50} \\
& \mathrm{R}=0.99\left(100 \times 10^{3}+\mathrm{R}\right) \\
& \mathrm{R}=99000+0.99 \mathrm{R} \\
& 0.01 \mathrm{R}=9900 \\
& \mathrm{R}=9900000 \\
& \mathrm{R}=10 \mathrm{M} \Omega
\end{aligned}
$$

4. Ans: (b)

Sol:

$$
\begin{aligned}
& \text { Total current } \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2} \\
& \mathrm{I}_{1}=150 \pm 1 \mathrm{~A} \quad \mathrm{I}_{2}=250 \pm 2 \mathrm{~A} \\
& \text { Limits of error are given as standard } \\
& \text { Deviations } \mathrm{d}_{1}=1 \quad \mathrm{~d}_{2}=2 \mathrm{n}=2
\end{aligned}
$$

$$
\begin{aligned}
\sigma & =\sqrt{\frac{\mathrm{d}_{1}^{2}+\mathrm{d}_{2}^{2}}{\mathrm{n}-1}} \\
\sigma & =\sqrt{\frac{(1)^{2}+(2)^{2}}{1}}=2.236 \\
\sigma & =2.24 \\
\mathrm{I} & =400 \pm 2.24
\end{aligned}
$$

6. Ans: (a)

Sol:

$$
\mathrm{V}=10.14 \mathrm{~V}, \quad \mathrm{I}=5.07 \mathrm{~mA}
$$

Resistance $\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{10.14}{5.07 \times 10^{-3}}=2 \mathrm{k} \Omega$
07. Ans: (c)

Sol:
Given that $\quad \mathrm{R}_{\mathrm{m}}=100 \Omega \quad \mathrm{I}_{\mathrm{FSD}}=1 \mathrm{~mA}$
From the circuit

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{\mathrm{se}}+\mathrm{V}_{\mathrm{m}} \mathrm{~V}=10 \\
& \mathrm{~V}_{\mathrm{se}}=\mathrm{V}-\mathrm{V}_{\mathrm{m}} \\
& 1 \times 10^{-3} \mathrm{R}=10-1 \times 10^{-3} \times 100 \\
& \mathrm{R}=9900 \Omega
\end{aligned}
$$

PREVIOUS GATE QUESTIONS

One Mark Questions:
2. GATE-EE -2001

Ans (a)
Sol:

$$
\begin{array}{ll}
\mathrm{R}_{1}=10 \Omega \pm 5 \% & \mathrm{R}_{2}=5 \Omega \pm 10 \% \\
\mathrm{R}_{1} \text { Ranges } \rightarrow 10 \times \pm 5 / 100 \Rightarrow \pm 0.5 & \rightarrow \mathrm{R}_{1}(10.5-9.5) \\
\mathrm{R}_{2} \text { Ranges } \rightarrow 5 \times \pm 10 / 100 \Rightarrow \pm 0.5 & \rightarrow \mathrm{R}_{2}(5.5-4.5)
\end{array}
$$

For Parallel combination

$$
\begin{aligned}
& \frac{10.5 \times 5.5}{10.5+5.5} \text { and } \frac{9.5 \times 4.5}{9.5+4.5} \\
&=3.60 \Omega \quad \text { and } 3.05 \Omega
\end{aligned}
$$

Two Marks Questions:

3. GATE, IN - 1996

Ans: (b)
Sol: From the circuit the bridge is under balanced condition when

$$
\frac{\mathrm{X}_{\mathrm{C}}}{\mathrm{R}}=1 \Rightarrow \mathrm{X}_{\mathrm{c}}=\mathrm{R} \text { then }
$$

Voltmeter reading is

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{\mathrm{S}}\left[\frac{\mathrm{R}}{\mathrm{R}+\mathrm{R}}\right] \\
& \mathrm{V}=10\left[\frac{\mathrm{R}}{2 \mathrm{R}}\right]=5 \mathrm{~V}
\end{aligned}
$$

4. GATE - IN - 2003

Ans: (a)
Sol : The output resistance obtained by using Thevenin's equivalent resistance by putting voltage source is zero

$$
\mathrm{R}_{12}=\frac{20 \times 10^{3} \times 30 \times 10^{3}}{20 \times 10^{3}+30 \times 10^{3}}+\frac{25 \times 10^{3} \times 25 \times 10^{3}}{25 \times 10^{3}+25 \times 10^{3}}=24.5 \mathrm{~K} \Omega
$$

6. GATE - IN - 2005

Ans:(d)
Sol:

$$
\begin{aligned}
& \text { The ammeter resistance }=0.01 \Omega \\
& \text { Voltmeter resistance }=2000 \Omega \\
& \text { True value of resistance } \\
& \qquad \begin{aligned}
\left(\mathrm{R}_{\mathrm{L}}\right)_{\mathrm{t}} & =\frac{\text { voltmeter reading }}{\text { ammeter reading }} \\
\left(\mathrm{R}_{\mathrm{L}}\right)_{\mathrm{t}} & =\frac{180}{2}=90 \Omega \\
\mathrm{I}_{\mathrm{L}} & =\mathrm{I}-\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{m}}} \\
& =2-\frac{180}{2000} \\
& =1.91 \mathrm{Amp}
\end{aligned}
\end{aligned}
$$

From the circuit measured value

$$
\begin{aligned}
& \left(\mathrm{R}_{\mathrm{L}}\right)_{\mathrm{m}}=\frac{180}{1.91}=94.24 \Omega \\
& \text { \%error }=\frac{\left(\mathrm{R}_{\mathrm{L}}\right)_{\mathrm{m}}-\left(\mathrm{R}_{\mathrm{L}}\right) \mathrm{t}}{\left(\mathrm{R}_{\mathrm{L}}\right)_{\mathrm{t}}} \times 100 \\
& =\frac{94.24-90}{90} \times 100=4.71 \%
\end{aligned}
$$

